Surveillance Colonoscopy for Dysplasia and Cancer in Children and Young Adults with Colonic IBD

James Markowitz, MD
Cohen Children’s Medical Center of NY
New Hyde Park, NY

Are children with colitis at risk for colorectal cancer?
Who do we have to screen?
- Ulcerative colitis?
- Proctosigmoiditis?
- Crohn’s colitis?

Disclosures
- Consultant
 - Janssen Pharmaceuticals
 - UCB

CRC Risk in Childhood Onset UC
- Mayo Clinic 1919 - 1965
- 396 children age <14 yrs at Dx of UC
- Ca Risk = 20% per decade after first decade of UC
- Cumulative incidence of Ca at 35 yrs of UC = 43%

Cumulative Risk of Developing Colorectal Cancer in Any Patient with UC
- Meta-analysis
 - 116 studies
 - >50,000 pts
- After 10 yrs, CRC rate increases ~0.5-1% per yr

Cumulative Probability of CRC Risk: Childhood vs Adult Onset UC
- Extent of pancolitis
 - Adults: ~20%
 - Children: ~50%

Cumulative Probability of CRC Risk: Childhood vs Adult Onset UC

- **Children:**
 - 0% after 10 yrs
 - 2% after 20 yrs
 - 4% after 30 yrs
- **Adults:**
 - 2% after 10 yrs
 - 4% after 20 yrs
 - 6% after 30 yrs

Risk of CRC in Childhood Onset UC

- **Population-based study from Sweden, 1922-1984**
- **3117 patients**
 - 266 diagnosed <15 years of age
 - 19% proctitis, 24% left sided UC, 56% pancolitis

<table>
<thead>
<tr>
<th>Extent of Colitis</th>
<th>Observed Cases</th>
<th>Person Years of Follow-up</th>
<th>Std Incidence Ratio (95% Confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left sided</td>
<td>0</td>
<td>1967</td>
<td>0 (0-173)</td>
</tr>
<tr>
<td>Pancolitis</td>
<td>13</td>
<td>2525</td>
<td>162 (86-277)</td>
</tr>
</tbody>
</table>

Cumulative incidence of cancer at 35 yrs of UC = 40%

-Ekbom, et al. NEJM 1990;323:1228-33

Proctosigmoiditis in Children

- **An uncommon diagnosis in children**
 - Peds IBD Registry: 81% with pancolitis at Dx
- **Proximal extension to left sided or extensive colitis common:**
 - Mir-Madjelessi: 38/66 (58%) within 5 yrs
 - Hyams: 11/38 (29%) in median 2.6 yrs

- Hyams J et al. Am J Gastroenterol 2011 (advanced online publication)

Colitis in young children often turns out to be Crohn’s Disease

- **At Dx,** isolated colonic disease noted in:
 - 63% children < 8 yrs of age
 - 35% children ≥ 8 yrs of age
- **In children <5 yrs at Dx of UC or IBD-U:**
 - 11/55 (20%) ultimately proven to have Crohn’s disease

Risk of Dysplasia or Cancer in Pancolitis

- **Single center database (Paris)**
- **Dx’d 1974-2002,** followed to 2010
- **Subjects:** 523 (CD), 276 (UC), 56 (IBD-U)
- **N = 75** (neoplasia)

- **25 yr cumulative risk for advanced HGD or CRC**
 - UC + IBD-U: 29.5 ± 5.7%
 - All CD: 3.9 ± 2.0%
 - “UC-like” CD: 10.6 ± 7.2%

Risk Factors for CRC In Colitis

- **Primary Risk Factors**
 - Extent of disease
 - Duration of disease
- **Protective Factors**
 - ? SASA treatment
 - ? Thiopurine Rx

- **Secondary Risk Factors**
 - Age at onset of colitis
 - Family history of colon cancer
 - Sclerosing cholangitis
 - Chronically active disease
- **Not Risk Factors**
 - Intensity of first attack
 - Severity of colitis
 - Immunosuppressive Rx
Screening vs Surveillance

- Screening colonoscopy
 - Generally started 8-10 yrs after initial dx
 - Determine extent of colitis
 - Evaluate for dysplasia or cancer
- Surveillance
 - Regularly scheduled colonoscopies designed to identify newly developed dysplasia or cancer

What is the optimal method for performing dysplasia surveillance?

1. Pancolonoscopy with random 4 quadrant biopsies every 10 cm
2. Pancolonoscopy with targeted biopsies

Random biopsy protocol

- Standard white light colonoscopy
- Random 4 quadrant bx q10 cm from cecum to rectum
- Requires:
 - 33 bx to r/o dysplasia with 90% certainty
 - 56-64 bx to r/o dysplasia with 95% certainty
- Protocol derived from sampling of colectomy specimens
- Identifies large areas of dysplasia for which risk of progression to cancer is fairly well established

Targeted biopsy protocols

- Utilize new endoscopic techniques to direct biopsies to areas of high risk
 - Chromoendoscopy with dye spray
 - Narrow band imaging
 - Magnification endoscopy
 - Confocal endomicroscopy
- Identify small fields of dysplasia
 - Progression to cancer less well established

Chromoendoscopy

- Utilize new endoscopic techniques to direct biopsies to areas of high risk
- Chromoendoscopy: Pit Patterns
- Dye spray catheter
- Mucosa stained with methylene blue
- Magnifying analysis and pit pattern

Rubin CE et al. Gastroenterol 1992;103:1611-1620

Kiesslich R and Neurath M. Gastroenterol Clin N Am 2012;41:291-302

Chromoendoscopy: Pit Patterns

http://www.humira.no/Picture-IT/Gastroenterology/Endoscopy/Chromoendoscopy.aspx
Chromoendoscopy Improves Dysplasia Yield

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Non-Dye Targeted</th>
<th>Dye Targeted</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGD or HGD</td>
<td>3/3264 (0.09%)</td>
<td>13/50 (26%)</td>
<td>22/82 (27%)</td>
</tr>
</tbody>
</table>

Marion J et al. Am J Gastroenterol 2008;103:2342–2349

Guidelines for Chromoendoscopy

- Evaluate patients in clinical remission (avoid active disease)
- Excellent bowel prep!
- Intubate to the cecum, examine on withdrawal
- Panchromoendoscopy (not local staining)
 - 0.4% indigo carmine or 0.1% methylene blue
 - Use dye-spray catheter to improve mucosal coverage
 - Apply to 20-30 cm length segments and examine carefully
- Analyze the pit pattern
 - Types I–II suggest nonmalignant lesions
 - Types III–V suggest intraepithelial neoplasia and carcinomas
- Perform targeted biopsies of all mucosal alterations, esp:
 - circumscribed lesions
 - lesions with pit patterns III–V

Modified from Kiesslich R and Neurath M. Gastroenterol Clin N Am 2012;41:291–302

Narrow Band Imaging: “Virtual Chromoendoscopy”

- Uses optical filters to illuminate mucosa with light narrowed to the wavelength maximally absorbed by hemoglobin
- Accentuates mucosal and submucosal vessels
- May delineate extent of lesions better than white light endoscopy
- Image similar to that seen with chromoendoscopy

Narrow Band Imaging: No Better than Standard or High Definition Endoscopy

- 42 adults with surveillance by both NBI and conventional colonoscopy within 3 weeks
 - 11 patients with neoplasia
 - 4 NBI only, 3 conventional only, 4 both

- 48 adults underwent surveillance by both NBI and high definition colonoscopy within 3 weeks
 - 16 neoplastic lesions in 11 patients identified
 - Patients: 9/11 identified by HDE, 8/11 by NBI
 - Lesions: 11 (69%) by HDE, 13 (81%) by NBI, p=0.727

NBI – No Better than High Def White Light Endoscopy

<table>
<thead>
<tr>
<th></th>
<th>NBI</th>
<th>WLE</th>
</tr>
</thead>
<tbody>
<tr>
<td># subjects with dysplasia</td>
<td>5/56</td>
<td>5/56</td>
</tr>
<tr>
<td># true dysplastic lesions by targeted bx</td>
<td>5/17 (29%)</td>
<td>7/11 (64%)</td>
</tr>
<tr>
<td>Overall rate of dysplasia by random 4 quadrant bx q10 cm:</td>
<td>1/2707 (0.04%)</td>
<td></td>
</tr>
</tbody>
</table>

Confocal Endomicroscopy
- In vivo microscopic examination of the mucosa during endoscopy
 - Requires another modality (e.g., NBI, chromoendoscopy) to identify targeted areas for exam
 - Requires fluorescent contrast agent to achieve high-contrast images

Endomicroscopy
- Advantages
 - Real-time pathological assessment
 - No biopsy required
 - Eliminates need for and expense of pathologist
- Disadvantages
 - Eliminates need for pathologist
 - Endoscopist now also pathologist → enhanced training, interobserver variability

Newer Techniques: “Optical Biopsy”
- Allow machine-based assessments
 - More objective and less operator dependent than visual interpretation
- Spectroscopic analyses
 - In situ, real-time measurements
 - Measure spectral signatures of light scattered by subcellular components of tissue
 - Not an imaging technique; semi-quantitative, algorithm driven

Optical Coherence Tomography
- Adenoma
- Healthy tissue

Laser Induced Fluorescence
- Mouse colon

Optical forceps

Optimal Intervals for Surveillance
- No controlled trials
- Guidelines based on clinical experience and published surveillance observations

AGA 2010
- Screening after 8 yrs for all UC; at Dx for PSC
- Surveillance q1-3 yrs for extensive and left sided colitis; q1 yr for PSC
- Random bx protocol
- Colectomy for HGD in flat mucosa; data insufficient for LGD

Farray F et al. Gastro 2010;138:738–745

ACG 2010
- Screening after 8-10 yrs for all UC; at Dx for PSC
- Surveillance q1-2 yrs for extensive and left sided colitis; q1 yr for PSC
- Random bx protocol
- Colectomy for HGD in flat mucosa; also for LGD